Detection of Cracks in Aluminum Structure beneath Inconel Repair Bushings

Aging Aircraft Conference
Phoenix Convention Center
Phoenix, Arizona
April 21-24, 2008

Mr. Kenneth J. LaCivita (USAF)

AFRL/RXSA

Air Force Research Laboratory

Wright-Patterson AFB, Ohio

Mr. Yushi Sun
Innovative Materials Testing Technologies Inc.
Superior, Colorado

Mr. Richard Harrison
508 ACSS/GFEAF
A-10 Structures Engineering Branch
Hill AFB, UT

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headqu and be aware that notwithstanding an OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or rmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 01 APR 2008		2. REPORT TYPE N/A		3. DATES COVERED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
Detection of Cracks in Aluminum Structure beneath Inconel Repair Bushings				5b. GRANT NUMBER	
Dushings				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AFRL/RXSA Air Force Research Laboratory Wright-Patterson AFB, Ohio				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited			
13. SUPPLEMENTARY NO The original docum	OTES nent contains color i	mages.			
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 32	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

- Fatigue cracking at fastener holes is a common problem in military and commercial aircraft
- Some repair methodologies resort to oversizing the hole to remove the crack
 - Reaming
 - Installing a repair bushing to return the hole to its nominal size

New cracking is now obscured by bushing

- For <u>thick multi-layer structures</u>, inspection options are often limited:
 - Ultrasound
 - Cannot penetrate unbonded/unsealed layers
 - Radiography
 - Contrast sensitivity may be inadequate
 - Two sided access may not be possible

- Subsequent <u>reinspection</u> often requires
 - Conventional high-frequency (200-500kHz) bolt hole eddy current
 - Requires <u>removal of the repair bushing</u> for probe access
 - Inspection coil is placed against the inside diameter of the bolthole where the cracking initiates and rotated to produce

inspection data

Significant downtime and manhours impact.

- Bushing repairs
 - Bushing becomes a physical barrier between the eddy current coil and the crack,
 - Significantly affects sensitivity

coil near crack in unbushed hole

coil and crack separated physically by bushing

- The United States Air Force has been working with Innovative Materials Testing Technologies (IMTT) Inc.
 - Small Business Innovative Research (SBIR) Program
 - Remote Field Eddy Current (RFEC)
 - Inspection <u>without</u> removal of repair bushings
 - If the bushing material can be "selected for NDI"
 - Low permeability and conductivity (i.e. Inconel 718)
 - Primary challenge then becomes detecting the weak eddy current field in the structure beyond the <u>bushing wall</u>

Inspection Challenge

A-10 Wing Station 23 Aft Wing Attachment Fitting

Inspection Challenge

- Multi-layer stackup
- Corner cracks in ½ inch diameter <u>aluminum</u> fastener hole
 - Wing skin, spar cap, or rib layers

Approach

- RFEC is commonly used in inspection of ferromagnetic pipe or tubing, because...
 - Conventional eddy current has strong "skin effect" in ferromagnetic materials
 - Eddy current depth of penetration equation:

$$\delta pprox rac{1}{\sqrt{\pi f \mu \sigma}}$$

where

 δ = standard depth of penetration in meters

f = test frequency in hertz

 μ = permeability in (H/m), $\mu = \mu 0 = 4\pi \times 10$ -7 for non-ferrous materials

 σ = conductivity in (Ω m)-1

Approach

- RFEC senses the "remotely" coupled rather than "directly" coupled eddy current field
 - Directly coupled eddy current field is generated by the exciter coil.
 - These eddy currents, in turn produce their own magnetic field, which opposes the magnetic field from the exciter coil.

- Three primary zones:
 - 1) the direct coupling zone (nearest the exciter coil)
 - 2) the transition zone, and
 - 3) the remote field zone

Since the directly coupled field decays at a faster rate, coil
placement can be optimized to sense only the remote field

Approach

- For this application, the bushing material was able to be selected with inspectability as a goal.
 - Inconel 718
 - low permeability (~µ₀)
 - low conductivity (< 2% IACS)

$$\stackrel{\bullet}{\phi} \approx \frac{1}{\sqrt{\pi f \mu \sigma}}$$

 Combined with low inspection frequency, depth of penetration is maximized

Approach

- However, for this application, conventional eddy current still struggles to produce a detectable crack response
 - Bushing wall thickness is a major factor

IMTT RFEC approach:

- Two probe coils in same rotational plane
- Probe coil shielding prevents direct coupling
- Receiving coil detects only the remote field

- Signals are similar to conventional bolt hole eddy current
 - Impedance plane
 - Probe liftoff, "real" component, oriented in X-direction
 - Flaw response, "imaginary" component, appears at a rotated phase
 - Sweep display
 - Indicates clock position of flaw in hole

Signals are similar to conventional bolt hole eddy current

Remote field signal

- Relatively weak, broad, "noisy"
- Influenced by local geometry and materials
- Signal Recognition Algorithm employed

Impedance plane

Sweep display

- Signal Recognition Algorithm
 - Flaw produces broad "W" shaped response

 Artificial waveform automatically generated to represent flaw response (RMS)

- Error threshold selected by user
 - Defines how well artificial waveform must match real signal

- "Fitting width" selected by user
 - Width of a flaw response is fairly repeatable
 - Physical width of a crack does not vary significantly
 - Narrower width response than many non-relevant features such as oblong holes, mechanical contact during scanning, uneven liftoff, etc.

- Magnitude (noise) threshold is selected by user
 - Similar to noise threshold selection in conventional eddy current

- "Fitting pick" is selected by user
 - Inspection noise can appear "crack-like"
 - But typically very localized, intermittent
 - -Does not continue in z-direction of scan

Combination of signal recognition algorithms:

Limitations

- "Dead zones" near interfaces
 - Discontinuous surface produces a crack-like response 5-10 times larger in amplitude than a 0.050-0.100 inch corner flaw
 - Size of "dead zone" varies with bushing configuration and adjacent material layers
 - Fortunately, cracks as small as 0.050 x 0.050, can still be detected beyond the dead zones!

Limitations

- Multiple cracks in the same plane
 - The current algorithm will only identify the largest flaw in a plane and assign the artificial signal to it
 - A second (smaller) crack in the same plane will be ignored

Spacing of cracks may also affect algorithm performance

Prototype Instrument

- SSEC II is a laptop computer based eddy current instrument
 - Controls the probe and scanner
 - Impedance plane, sweep, and C-scan formats in near real time
 - Custom software
 - unique signal recognition algorithms

Prototype Instrument

- Probe
 - shielded coils (8-50kHz range)
 - aligned circumferentially
 - self-centering ball-bearing guide to prevent coil contact with the bushing wall

Prototype Instrument

- Rotary scanner
 - Slip ring (sliding electrical contact) design
 - Probe adapter alignment collar
 - Magnetic base to attach to the steel external layer
 - "hands-free" inspection in inverted position
 - Scan times ~ 0.3in/min
 - Conventional high frequency bolt hole eddy current ~ 0.3in/sec.
 - Indexing optimized to 0.010 in for this application (0.003 possible)

Test Results

Laboratory manufactured test standards

- Repair bushings of various wall thicknesses
 - 0.032 to 0.125 inches thick
- Corner cracks or corner EDMs
 - 0.060 x 0.020 inches to 0.120 x 0.130 inches

Test Results

Aircraft structure

A-10 Wing Attach Fitting section with bushed holes containing cracks

0.090"at interface x 0.075"into bore

0.020"at interface x 0.060"into bore

- Two 0.532" diameter holes with Inconel bushings installed (yellow arrows/red outlined holes).
 - Hole #3, large crack, 0.075 x 0.090
 - Hole #4, small crack, 0.060 x 0.020
- Cracks at wing skin layer (red layer)

Test Results

Future Work

- Evaluation of the effect of interfaces
 - discontinuous surface produces a crack-like response
 - virtual "dead zone" near interfaces
- Effect of adjacent steel layers
 - magnitude and phase of the response changes
 - automated phase adjustment will be explored
- Effect of multiple flaws on the signal recognition algorithm
- Effect of larger flaws on the signal recognition algorithm
- Automatic identification of the presence of an Inconel bushing
- Improvements in scanner hardware and software
- More portable/rugged instrument